Quantifying the accuracy of benchmark calculations of non-covalent complexes

Jan Řezáč

Institute of Organic Chemistry and Biochemistry, AS CR

November 30, 2015

- Non-covalent interactions are important in many areas of chemistry
- Difficult to describe by computational methods
- Accurate treatment of electron correlation needed

• Accuracy of computational methods not a priori known

Quantifying the accuracy of computational methods

- Experiment dissociation energy D_0 is complex quantity (ΔH_0^0)
- Hard to reproduce by calculations
- Limited experimental data
- Comparing calculation to calculation is straightforward
- Interaction energy (ΔE) easy to calculate
- Reliable benchmark needed an order of magnitude more accurate than tested methods

Experimental benchmark

- D₀ can not be calculated directly
- Calculated components are not observables
- Structure \rightarrow deformation energy E^{def}
- Nuclear dynamics / Vibrational analysis $\rightarrow \Delta ZPVE$
- Interaction energy ΔE
- Choice of method (coverage of correlation)
- Convergence with basis set
- Other effects/approximations

Experimental benchmark – HF dimer

- Experiment¹ with accuracy $\pm 1 cm^{-1}$
- Small enough to apply the best quantum chemistry offers²
- Uncertainty of components due to basis set size

18			
	Dissociation energy component	ts (kcal/r	mol)
	Uncertainty of the geometry		\pm 0.003
	HF energy	-3.822	\pm 0.000
	CCSD(T) correlation energy	-0.786	\pm 0.003
	$\Delta CCSDT(Q)$	-0.009	\pm 0.003
	ΔCCSDTQ	0.001	\pm 0.001
	Relativistic effects	0.016	\pm 0.001
	Diagonal B-O correction	-0.012	\pm 0.000
	Deformation energy	0.028	\pm 0.001
	Harmonic ZPVE	1.805	\pm 0.017
	ZPVE anharmonicity (VPT2)	-0.185	$\pm \ 0.019$
	Sum – calculated D0	-2.964	\pm 0.047
	Experimental D0	-3.036	$\pm \ 0.003$
- 2			

¹Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681–6695.

²Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Jan Řezáč (IOCB AS CR)

November 30, 2015 5 / 2

Experimental benchmark – HF dimer

- Experiment¹ with accuracy $\pm 1 cm^{-1}$
- Small enough to apply the best quantum chemistry offers²
- Uncertainty of components due to basis set size

Dissociation energy component	ociation energy components (kcal/mol)			
Uncertainty of the geometry		\pm 0.003		
HF energy	-3.822	\pm 0.000		
CCSD(T) correlation energy	-0.786	\pm 0.003		
$\Delta CCSDT(Q)$	-0.009	\pm 0.003	$\theta_a = 68.4^{\circ}$	
ΔCCSDTQ	0.001	\pm 0.001	ЧQ	
Relativistic effects	0.016	\pm 0.001	$r_{HF,a} = 0.920 \text{ Å}$	
Diagonal B-O correction	-0.012	\pm 0.000	r _{EE} = 2.742	
Deformation energy	0.028	\pm 0.001	F	
Harmonic ZPVE	1.805	\pm 0.017	$\Theta_{d} =$	
ZPVE anharmonicity (VPT2)	-0.185	\pm 0.019		
Sum – calculated D0	-2.964	\pm 0.047		
Experimental D0	-3.036	\pm 0.003		

¹Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681-6695.

²Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Jan Řezáč (IOCB AS CR)

 $r_{HEd} = 0.923 \text{ Å}$

 $\theta_{\star} = 6.9^{\circ}$

Experimental benchmark – HF dimer

- Experiment¹ with accuracy $\pm 1 cm^{-1}$
- Small enough to apply the best quantum chemistry offers²
- Uncertainty of components due to basis set size

Dissociation energy component	ts (kcal/i	mol)
Uncertainty of the geometry		\pm 0.003
HF energy	-3.822	\pm 0.000
CCSD(T) correlation energy	-0.786	\pm 0.003
$\Delta CCSDT(Q)$	-0.009	\pm 0.003
ΔCCSDTQ	0.001	\pm 0.001
Relativistic effects	0.016	\pm 0.001
Diagonal B-O correction	-0.012	\pm 0.000
Deformation energy	0.028	\pm 0.001
Harmonic ZPVE	1.805	\pm 0.017
ZPVE anharmonicity (VPT2)	-0.185	\pm 0.019
Sum – calculated D0	-2.964	\pm 0.047
Experimental D0	-3.036	\pm 0.003

¹Bohac, E. J.; Marshall, M. D.; Miller, R. E. J. Chem. Phys. 1992, 96 (9), 6681–6695.

²Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2014, 10 (8), 3066–3073.

Computational benchmarking

What do we do?

The "gold standard" in benchmarking: CCSD(T)/CBS

- "First method accurate enough, last computationally tractable"
- Small systems direct extrapolation to CBS
- Larger systems composite scheme

$$E^{CCSD(T)} = E^{HF} + E^{MP2} + \delta E^{CCSD(T)}$$

$$\delta E^{CCSD(T)} = E^{CCSD(T)} - E^{MP2}$$

- Counterpoise correction, frozen core approximation
- What is the accuracy of this benchmark?

Benchmarking the CCSD(T)/CBS benchmark

- A24 data set 24 complexes featuring diverse interactions³
- Best estimate of interaction energies: $CCSD(T)/CBS + \Delta CCSDT(Q) +$ all electron and relativistic corrections
- Recently updated with more accurate CCSDT(Q) calculations⁴

³Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2013, 9 (5), 2151–2155.

⁴Řezáč, J.; Dubecký, M.; Jurečka, P.; Hobza, P. Phys. Chem. Chem. Phys. 2015, 17 (29),19268–19277. 😑 👘 🍃 🛷 🔍

Errors inherent to CCSD(T)/CBS

- Errors inherent to frozen-core CCSD(T), based on updated reference from ⁵
 - Truncation of the CC series, **1.14%** vs. CCSDT(Q) CCSDT(Q) covers about 95% of correlation missing in CCSD(T),⁶ Convergence of ΔE^{int} tested up to FCI⁷
 - Frozen core approximation, 0.57%
 - Relativistic effects, 0.14% (in light elements)
 - Born-Oppenheimer approximation, ca. 0.1% (HF dimer)
- Overall error 1.7%

⁵Řezáč, J.; Dubecký, M.; Jurečka, P.; Hobza, P. Phys. Chem. Chem. Phys. 2015, 17 (29), 19268–19277.

⁶Bomble, Y. J.; Stanton, J. F.; Kállay, M.; Gauss, J. J. Chem. Phys. 2005, 123 (5), 054101–054101.

⁷Šimová, L.; Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2013, 9 (8), 3420–3428.

- \bullet CCSD(T)/CBS has error of about 1.7% compared to exact solution
- Largest source of error is approximate treatment of correlation
- ${\scriptstyle \bullet}$ CCSDT(Q) is a solution applicable to small model systems

- Accuracy of composite schemes applicable to larger molecules
- Evaluated in the A24 set, reference is CCSD(T) extrapolated from aug-cc-pV(T,Q,5)Z basis sets
- Composite scheme $E^{CCSD(T)} = E^{HF} + E^{MP2} + \delta E^{CCSD(T)}$
 - E^{HF} in the same basis as MP2, not extrapolated
 - E^{MP2} multiple ways to achieve CBS:
 - Single calculation
 - Extrapolation (Helgaker⁸, $\Delta E_X^{corr} = E_{CBS}^{corr} + aX^{-3}$)
 - Explicitly correlated (MP2-F12)
 - Explicitly correlated, extrapolated (Hill⁹)
 - $\delta E^{CCSD(T)}$ in basis no larger than MP2

⁸Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106 (23), 9639–9646.

⁹Hill, J. G.; Peterson, K. A.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2009, 131, 194105.

• MP2 in QZ

• MP2 in TZ

• MP2 in DZ

- Extrapolation and MP2-F12 yield comparable results at comparable expense
- MP2-F12 is the only solution in small (DZ) basis
- The bottleneck is always the CCSD(T) correction
- 1% accuracy can be achieved with CCSD(T) correction in triple-zeta basis

Benchmark data sets and their accuracy

- S66^{10,11} and X40¹² use following scheme: HF/aug-cc-pVQZ + MP2/aug-cc-pV(T \rightarrow Q)Z + Δ CCSD(T)/heavy-aug-cc-pVTZ Accuracy of 1.1% in A24
- Non-equilibrium geometries in S66x8, S66a8 and X40x10: HF/aug-cc-pVQZ + MP2/aug-cc-pV(T \rightarrow Q)Z + Δ CCSD(T)/aug-cc-pVDZ Accuracy of 2.1% in A24

¹⁰Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7 (8), 2427–2438.

¹¹Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7 (11), 3466–3470.

¹²Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2012, 8 (11), 4285–4292.

Automation of dataset calculations

- Cuby framework developed by the author¹³
- Automatic calculation of data set, processing of the results
- Implements also CC correction and extrapolation to CBS
- Data sets discussed here are distributed with the framework

e	/bin/ba /bin/t	sh Iash			+	×
/// // Cuby / Dataset calculation ///						
name	E	Eref	error	error(%)		
01 Water Water	-4.882	-5.011	0.129	2.582		
02 Water MeOH	-5.029	-5.701	0.672	11.780		
03 Water MeNH2	-6.817	-7.036	0.219	3,118		
04 Water Peptide	-7.642	-8.220	0.578	7.029		
05 MeOH MeOH	-4.634	-5.851	1.217	20.800		
06 MeOH MeNH2	-6.036	-7.666	1.630	21.258		
07 MeOH Peptide	-6.792	-8.337	1.545	18.532		
08 MeOH Water	-4.287	-5.087	0.800	15.734		
09 MeNH2 MeOH	-4.581	-3.113	-1.468	-47.170		
10 MeNH2 MeNH2	-5.377	-4.223	-1.154	-27.330		
11 MeNH2 Peptide	-6.193	-5.480	-0.713	-13.005		
12 MeNH2 Water	-6.482	-7.402	0.920	12.432		
13 Peptide MeOH	-6.484	-6.282	-0.202	-3.222		
14 Peptide MeNH2	-9.365	-7.561	-1.804	-23.860		
15 Peptide Peptide	-9.456	-8.721	-0.735	-8.431		
16 Peptide Water	-6.117	-5.199	-0.918	-17.650		
17 Uracil Uracil (BP)	-16.059	-17.448	1.389	7.961		
18 Water Pyridine	-6.133	-6.975	0.842	12.073		

¹³http://cuby4.molecular.cz

▲□▶▲圖▶▲圖▶▲圖▶ 圖 釣ぬ(

Automation of dataset calculations

- Cuby framework developed by the author¹³
- Automatic calculation of data set, processing of the results
- Implements also CC correction and extrapolation to CBS
- Data sets discussed here are distributed with the framework

				/bin/bas	h			-	+	×
										
66 MeNH2	Pyridine			-4.297	-3.966	-0.331	-8.340			
RMSE	0.979	kcal/mol								
MUE	0.788	kcal/mol								
MSE	0.162	kcal/mol								
min	-1.804	kcal/mol								
max	2.660	kcal/mol								
range	4.464	kcal/mol								
min abs	0.032	kcal/mol								
max abs	2.660	kcal/mol								
RMSE	25.204	%								
MUE	19,104	%								
MSE	-0.390	%								
min	-60.382	%								
max	56.817	%								
range	117.199	%								
min abs	0.970	%								
max abs	60.382	%								
MUE/ avg	14.328	%								
H-bonds	(23) RMSE	1 089	MSE	0 32	7 kcal/m	nl				
dispersion	(23) RMSE	0.854	MSE	-0.35	5 kcal/m	101				
others	(20) RMSE	0 981	MSE	0.56	6 kcal/m	101				
	(20) 10102									

¹³http://cuby4.molecular.cz

- Accuracy of composite CSCD(T)/CBS calculations is now well characterized
- Excellent accuracy of 1–2% can be achieved in routine calculations of medium-sized molecules
- Going beyond that is extremely difficult

Why composite CCSD(T)/CBS works so well?

- Using composite scheme MP2/CBS + (E^{CCSD(T)} - E^{MP2})/smaller basis
 - Historically, developed as most economic option
 - No special convergence properties of the correction
 - However, its accuracy is hard to beat
- More expensive CCSD/CBS + (T)/smaller basis is not better
- The same applies to CCSD(T)-F12 or CCSD(T*)-F12¹⁴

¹⁴Patkowski, K. The Journal of Chemical Physics 2012, 137 (3), 034103.

Basis set dependence of CCSDT(Q) correction

- $O(N^9)$ scaling limits basis set size
- Convergence differs with nature of the interaction^{15,16}

¹⁵Smith, D. G. A.; Jankowski, P.; Slawik, M.; Witek, H. A.; Patkowski, K. J. Chem. Theory Comput. 2014, 10 (8), 3140–3150.

¹⁶Demovičová, L.; Hobza, P.; Řezáč, J. Phys. Chem. Chem. Phys. 2014, 16 (36), 19115-19121.

Jan Řezáč (IOCB AS CR)

November 30, 2015