Accurate description of non-covalent interactions in QM methods applicable to large systems

Jan Řezáč

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

May 21, 2014

Introduction

Importance of noncovalent interactions

< A

-

Computational methods

What do we do?

Jan Řezáč (IOCB AS CR)

May 21, 2014 4 / 26

Benchmarks

イロト イポト イヨト イヨト

Benchmark data

The benchmark method: CCSD(T)/CBS

- Accurate and consistent description of different interactions
- Applicable to reasonably large systems (up to cca. 40 atoms)
- Composite calculation: $E = E^{MP2/CBS} + \Delta CCSD(T)$ $\Delta CCSD(T) = E^{CCSD(T)/BS} - E^{MP2/BS}$

• BS = aug-cc-pVDZ
$$\rightarrow$$
 error 3%
BS = aug-cc-pVTZ \rightarrow error 1%

S66 data set

- **S66** 66 comlexes of (bio)organic molecules^{1,2}
- All important interaction motifs covered
- Intended as a replacement of S22

¹Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 2427–2438.

²Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 3466–3470.□ > < 🗇 > < ≧ > < ≧ > ⇒ ≧ → へへ

Jan Řezáč (IOCB AS CR)

Cuby framework

S66 data set

- **S66** 66 comlexes of (bio)organic molecules^{1,2}
- All important interaction motifs covered
- Intended as a replacement of S22
- Auxiliary data sets covering nonequilibrium geometries:
- S66x8 Dissociation curves
 S66a8 Angular displacements
- More than 1000 CSCD(T)/CBS points

Jan Řezáč (IOCB AS CR)

¹Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 2427–2438.

Other benchmark data sets

Halogented molecules

- X40 40 systems, including halogen bonding³
- X40x10 dissociation curves

Large complexes

 $\bullet~\mbox{L7}$ - large systems, up to 110 \mbox{atoms}^4

³Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2012, 8, 4285–4292. ⁴Sedlák, R.: Janowski, T.: Pitoňák, M.: Řezáč, J.: Pulay, P.: Hobza, P. J. Chem. (Theory Comput. 2013 < ∋ →

Jan Řezáč (IOCB AS CR)

Cuby framework

May 21, 2014 8 / 26

Correlated methods

イロト イポト イヨト イヨト

Parameterized correlated methods

- Even advanced correlated methods can bebefit from empirical parameterization
- Near-bechmark results at substantially lower cost: MP2.5⁵, SCS-MI-CCSD⁶

⁵Pitoňák, M.; Neogrády, P.; Černý, J.; Grimme, S.; Hobza, P. ChemPhysChem 2009, 10, 282.

⁶Pitoňák, M.; Řezáč, J.; Hobza, P. Phys. Chem. Chem. Phys. 2010, 12, 9611. « ロ ト 《 伊 ト 《 ヨ ト 《 ヨ ト / ヨ ト / ヨ / ヘ 〇

Jan Řezáč (IOCB AS CR)

Cuby framework

Parameterized correlated methods

- Even advanced correlated methods can bebefit from empirical parameterization
- Near-bechmark results at substantially lower cost: MP2.5⁵, SCS-MI-CCSD⁶

⁵Pitoňák, M.; Neogrády, P.; Černý, J.; Grimme, S.; Hobza, P. ChemPhysChem 2009, 10, 282.

⁶Pitoňák, M.; Řezáč, J.; Hobza, P. Phys. Chem. Chem. Phys. 2010, 12, 9611. « ロ ト 《 伊 ト 《 ヨ ト 《 ヨ ト / ヨ ト / シー シー クへく

Jan Řezáč (IOCB AS CR)

Cuby framework

One-electron methods

Jan Řezáč (IOCB AS CR)

≣▶ ৰ ≣▶ ≣ পিও May 21, 2014 11 / 26

イロト イポト イヨト イヨト

One-electron methods

One-electron methods

DFT-D

Jan Řezáč (IOCB AS CR)

Cuby framework

≣▶ ◀ 볼▶ 불 ∽ ९ (May 21, 2014 12 / 26

◆ロト ◆聞ト ◆臣ト ◆臣ト

Semiempirical methods

Semiempirical methods - Advantages

- Approximate but retain the adavntages of QM calculations
- No system-specific preparation needed
- Very fast, routine calculations of large systems possible⁷

⁷Stewart, J. J. P. J. Mol. Model. 2008, 15, 765.

Semiempirical methods - Problems

- Poor description of noncovalent interactions:
 - London dispersion is missing (one-electron method)
 - Hydrogen bonds underestimated (hydrogen not polarizable)
 - Halogen bonds not described in minimal basis set

Semiempirical methods - Problems

- Poor description of noncovalent interactions:
 - London dispersion is missing (one-electron method)
 - Hydrogen bonds underestimated (hydrogen not polarizable)
 - Halogen bonds not described in minimal basis set
- Solution: empirical corrections
- Developed for most common semiempirical methods: AM1, PM3, RM1, OM2, PM6
- Applicable also to density functional tight binding (DFTB)
- PM6: Good results, fast, covers almost all elements
- Three generations: PM6-DH⁸, PM6-DH2⁹, PM6-D3H4¹⁰

Jan Řezáč (IOCB AS CR)

⁸J. Řezáč, J. Fanfrlík, D. Salahub, and P. Hobza, J. Chem. Theory Comput. 5, 1749 (2009)

⁹M. Korth, M. Pitoňák, J. Řezáč, and P. Hobza, J. Chem. Theory Comput. 6, 344 (2010)

¹⁰ J. Řezáč and P. Hobza, J Chem Theory Comput 8, 141 (2012)

Corrections for semiempirical methods: Dispersion

- Dispersion is missing
- Empirical correction analogous to DFT-D

$$E_{disp} = \sum_{i} \sum_{j < i} f_{damp}(r_{ij}) rac{c_{6,ij}}{r_{ij}^6}$$

- PM6-D3H4¹¹ is based on the advanced D3 correction by S. Grimme¹², uses environment-dependent c_6 coefficients
- Additional correction for underestimated repulsion in hydrocarbons

Jan Řezáč (IOCB AS CR)

¹¹J. Řezáč and P. Hobza, J Chem Theory Comput 8, 141 (2012)

¹²Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 132, 154104 (2010)= 🕨 🛪 🗇 🔻 🖹 👘 💈 🔊 🔍

Corrections for semiempirical methods: Hydrogen bond

- Empirical correction, function of local geometry of the H-bond
- Independent calculation added to the SQM result
- PM6-D3H4 solved all issued of the previous generations

$$E_{HB} = c \cdot f_{rad}(r_{DA}) \cdot f_{ang}(\alpha_{DHA}) \cdot f_{PT}(r_{DH}, r_{HA}) \cdot s_{charged}$$

 f_{rad} and f_{ang} are polynomials of desired properties

Corrections for semiempirical methods: Hydrogen bond

- Empirical correction, function of local geometry of the H-bond
- Independent calculation added to the SQM result
- PM6-D3H4 solved all issued of the previous generations

	H2	H+	H4
exact gradient	NO	YES	YES
proton transfer	NO	YES	YES
accurate for charged systems	YES	NO	YES
smooth energy derivatives	NO	NO	YES
coordinates per bond (torsions)	4 (2)	7 (4)	3 (0)

Corrections for semiempirical methods: Halogen bond

- -X correction¹³, specific for PM6 where repulsion was strongly underestimated
- Later reparameterized on better benchmarks¹⁴
- PM6-D3H4X can describe wide range of interactions with chemical accuracy

¹³J. Řezáč and P. Hobza, Chem. Phys. Lett. 506, 286 (2011)

¹⁴Brahmkshatriya, P. S. et al., Curr. Comput.-Aid. Drug. 2013, 9, 118–129.

Jan Řezáč (IOCB AS CR)

Cuby framework

May 21, 2014 18 / 26

Results - S66 data set

Jan Řezáč (IOCB AS CR)

Cuby framework

May 21, 2014 19 / 2

Results - S66 data set

Jan Řezáč (IOCB AS CR)

May 21, 2014 19 / 26

Results - comparison

	S66	S66x8	S66a8	S22	H-bonds	Charged HB	Hydrocarbons	AASidechains	AVG	AVG
PM6	3.02	2.49	2.12	4.16	3.18	3.92	2.64	4.08	3.20	3.30
PM6-DH2	0.91	0.79	0.73	0.54	1.52	2.21	0.67	1.32	1.09	1.17
PM6-DH+	0.82	0.76	0.67	0.80	1.43	1.94	0.67	1.89	1.12	1.33
PM6-D3H4	0.65	0.66	0.68	0.78	1.05	1.11	0.71	1.17	0.85	0.98
PM6-D3H4*	0.70	0.71	0.74	0.84	1.12	2.26	0.71	1.86	1.12	1.23
DFTB	2.88	2.40	2.24	3.45	2.82	4.78	2.90	3.44	3.11	3.05
DFTB-D	1.50	1.43	1.28	1.63	1.96	4.28	0.59	2.27	1.87	1.60
DFTB-D, y	1.17	1.17	1.04	1.21	1.61	3.67	0.56	1.82	1.53	1.33
DFTB-DH2	1.44	1.15	0.98	1.86	1.54	2.13	0.59	1.62	1.41	1.25
DFTB-D3H4	0.67	0.62	0.61	0.97	0.71	1.43	0.59	0.88	0.81	0.73
RM1	5.39	4.38	4.13	7.15	5.40	5.60	3.65	5.34	5.13	4.80
RM1-D3H4	0.92	0.90	0.78	1.03	0.90	2.05	0.24	0.73	0.94	0.62
RM1-D3H4*	0.91	0.90	0.79	1.03	0.89	2.09	0.24	0.93	0.97	0.69
OM3 ^a	3.33	2.70	2.49	4.17	2.88	3.00	3.93	4.99	3.44	3.93
OM3-DH2 ^a	0.80	0.96	0.62	0.96	0.84	1.83	1.11	1.53	1.08	1.16
OM3-D3H4°	0.48	0.60	0.42	0.58	0.56	1.50	0.70	2.34	0.90	1.20
AM1	6.24	5.27	4.03	8.66	6.10	7.64	3.73	6.38	6.01	5.40
AM1-DH2	1.93	1.96	1.47	0.85	2.08	3.58	3.94	3.71	2.44	3.25
AM1-D3H4	1.35	1.76	1.45	1.76	2.11	3.04	0.82	2.02	1.79	1.65
PM3	5.08	4.51	3.77	7.64	4.98	7.03	2.25	4.60	4.98	3.94
PM3-D3H4	1.40	1.26	0.97	2.51	0.83	2.23	0.40	1.05	1.33	0.76
TPSS/TZVP-D	0.69	0.53	0.57	0.58	1.04	1.89	0.72	0.89	0.86	0.88
MP2/cc-pVTZ	0.70	0.59	0.57	1.85	1.40	1.81	0.88	1.62	1.18	1.30

Errors in kcal/mol

Ξ

イロト イポト イヨト イヨト

Applications of the methods

- In silico drug design^{15,16}
 - Optimization of whole protein or large part of it
 - Reliable protein-ligand interaction energies
 - Can reproduce and predict experiment
 - Outperforms MM forcefield

¹⁵Fanfrlík, J. et al. Phys. Chem. B 2010, 114, 12666–12678.

16 Lepšík, M.; Řezáč, J.; Kolář, M.; Pecina, A.; Hobza, P.; Fanfrlík, J. ChemPlusChem 2013 🗇 🕨 🐗 🖹 🕨 🖉 🕤 🔍 🔾

Jan Řezáč (IOCB AS CR)

Cuby framework

Peptide conformations

- GFA tripeptide, CCSD(T) benchmark for 16 low-lying conformers¹⁷
- Relative energy range 1.6 kcal/mol

¹⁷ Valdes, H.; Pluháčková, K.; Pitonák, M.; Řezáč, J.; Hobza, P. Phys. Chem. Chem. Phys. 🖓 008, 10, 2747. 🗄 👘 🚊 🛷 🧠 🔅

Peptide conformations

- GFA tripeptide, CCSD(T) benchmark for 16 low-lying conformers¹⁷
- Relative energy range 1.6 kcal/mol

Method	RMSE (kcal/mol)
AMBER ff, water charges	2.4
AMBER ff, gas phase charges	1.4
MP2/CBS	0.4
BLYP-D3	0.8
DFTB-D	0.6
DFTB-D3	0.4
DFTB-D3H4	1.1
PM6	1.3
PM6-D3H4	0.7

¹⁷Valdes, H.; Pluháčková, K.; Pitonák, M.; Řezáč, J.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10; 2747.

- The latest semeiempirical method PM7¹⁸ already contains corrections derived from PM6-DH2
- It performs similarly to PM6-D3H4 in small complexes¹⁹
- It strongly overetsimates the interactions in larger systems, we are working on a fix

Jan Řezáč (IOCB AS CR)

¹⁸Stewart, J. J. P. J Mol Model 2013, 19, 1–32.

Data and method availability

- Our benchmark data sets are available online at www.begdb.com
- Corrected SQM methods up to PM6-DH2 are available in MOPAC
- The -D3H4 correction implementation is available at www.molecular.cz/~rezac

イロト イポト イヨト イヨト

- Large database of benchmark data is indispensable for development of parameterized methods
- It is important to use also nonequilibrium geometries
- Parameterized correlated methods such as MP2.5 and SCS-MI-CCSD are economic alternative to CCSD(T) calculations
- \bullet Corrected SQM methods can describe noncovalent interactions with error $< 1 \mbox{ kcal/mol}$
- Applicable to thousands of atoms

Acknowledgements

- Pavel Hobza
- Kevin Riley (USA)
- Robert Sedlák
- Michal Pitoňák (Slovakia)
- Jindřich Fanfrlík
- Martin Lepšík
- Haydee Valdes (Spain)